When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    These two non-atomic examples are closely related: a sequence (x 1, x 2, ...) ∈ {0,1} ∞ leads to the number 2 −1 x 1 + 22 x 2 + ⋯ ∈ [0,1]. This is not a one-to-one correspondence between {0,1} ∞ and [0,1] however: it is an isomorphism modulo zero , which allows for treating the two probability spaces as two forms of the same ...

  3. Gaussian probability space - Wikipedia

    en.wikipedia.org/wiki/Gaussian_probability_space

    In probability theory particularly in the Malliavin calculus, a Gaussian probability space is a probability space together with a Hilbert space of mean zero, real-valued Gaussian random variables. Important examples include the classical or abstract Wiener space with some suitable collection of Gaussian random variables. [1] [2]

  4. Ionescu-Tulcea theorem - Wikipedia

    en.wikipedia.org/wiki/Ionescu-Tulcea_theorem

    In the mathematical theory of probability, the Ionescu-Tulcea theorem, sometimes called the Ionesco Tulcea extension theorem, deals with the existence of probability measures for probabilistic events consisting of a countably infinite number of individual probabilistic events.

  5. Sample space - Wikipedia

    en.wikipedia.org/wiki/Sample_space

    A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.

  6. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...

  7. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    If X n converges in probability to X, and if P(| X n | ≤ b) = 1 for all n and some b, then X n converges in rth mean to X for all r ≥ 1. In other words, if X n converges in probability to X and all random variables X n are almost surely bounded above and below, then X n converges to X also in any rth mean. [10] Almost sure representation ...

  8. Standard probability space - Wikipedia

    en.wikipedia.org/wiki/Standard_probability_space

    The product of two standard probability spaces is a standard probability space. The same holds for the product of countably many spaces, see (Rokhlin 1952, Sect. 3.4), (Haezendonck 1973, Proposition 12), and (Itô 1984, Theorem 2.4.3). A measurable subset of a standard probability space is a standard probability space.

  9. Almost surely - Wikipedia

    en.wikipedia.org/wiki/Almost_surely

    In probability experiments on a finite sample space with a non-zero probability for each outcome, there is no difference between almost surely and surely (since having a probability of 1 entails including all the sample points); however, this distinction becomes important when the sample space is an infinite set, [2] because an infinite set can ...