Search results
Results From The WOW.Com Content Network
The coefficients of the super-harmonic terms are solved directly, and the coefficients of the harmonic term are determined by expanding down to order-(n+1), and eliminating its secular term. See chapter 10 of [5] for a derivation up to order 3, and [8] for a computer derivation up to order 164.
First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.
However, if the second derivative is only positive between and +, or only negative (as in the diagram), the curve will increasingly veer away from the tangent, leading to larger errors as increases. The diagram illustrates that the tangent at the midpoint (upper, green line segment) would most likely give a more accurate approximation of the ...
The second-order autonomous equation = (, ′) is more difficult, but it can be solved [2] by introducing the new variable = and expressing the second derivative of via the chain rule as = = = so that the original equation becomes = (,) which is a first order equation containing no reference to the independent variable .
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. [1]
It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Erdélyi et al. (1953 ...
In mathematics, more specifically in the study of dynamical systems and differential equations, a Liénard equation [1] is a type of second-order ordinary differential equation named after the French physicist Alfred-Marie Liénard.
Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.