When.com Web Search

  1. Ad

    related to: finding the equation of a circle calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Method of normals - Wikipedia

    en.wikipedia.org/wiki/Method_of_normals

    The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would construct a circle that was tangent to a given curve. He could then use the radius at the point of intersection to find the slope of a normal line, and from this one can easily find the slope of a tangent line.

  3. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...

  4. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The equation of the circle determined by three points (,), (,), (,) not on a line is obtained by a conversion of the 3-point form of a circle equation: () + () () () = () + () () (). Homogeneous form In homogeneous coordinates , each conic section with the equation of a circle has the form x 2 + y 2 − 2 a x z − 2 b y z + c z 2 = 0 ...

  5. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The transformation sends the circle to an ellipse by stretching or shrinking the horizontal and vertical diameters to the major and minor axes of the ellipse. The square gets sent to a rectangle circumscribing the ellipse. The ratio of the area of the circle to the square is π /4, which means the ratio of the ellipse to the rectangle is also π /4

  6. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    where c ∈ ℝ n is the center of the circle (irrelevant since it disappears in the derivatives), a,b ∈ ℝ n are perpendicular vectors of length ρ (that is, a · a = b · b = ρ 2 and a · b = 0), and h : ℝ → ℝ is an arbitrary function which is twice differentiable at t.

  7. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):

  8. Circumference - Wikipedia

    en.wikipedia.org/wiki/Circumference

    In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure.

  9. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    where C is the circumference of a circle, d is the diameter, and r is the radius. More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width. = where A is the area of a circle. More generally, =