When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 2: Column effective length factors for Euler's critical load. In practical design, it is recommended to increase the factors as shown above. The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only.

  3. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...

  4. Buckling - Wikipedia

    en.wikipedia.org/wiki/Buckling

    The theory of the behavior of columns was investigated in 1757 by mathematician Leonhard Euler. He derived the formula, termed Euler's critical load, that gives the maximum axial load that a long, slender, ideal column can carry without buckling. An ideal column is one that is:

  5. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    Johnson's formula interpolates between the yield stress of the column material and the critical stress given by Euler's formula. It creates a new failure border by fitting a parabola to the graph of failure for Euler buckling using = () There is a transition point on the graph of the Euler curve, located at the critical slenderness ratio.

  6. Sod shock tube - Wikipedia

    en.wikipedia.org/wiki/Sod_Shock_Tube

    The Sod shock tube problem, named after Gary A. Sod, is a common test for the accuracy of computational fluid codes, like Riemann solvers, and was heavily investigated by Sod in 1978. The test consists of a one-dimensional Riemann problem with the following parameters, for left and right states of an ideal gas .

  7. Euler number (physics) - Wikipedia

    en.wikipedia.org/wiki/Euler_number_(physics)

    The Euler number (Eu) is a dimensionless number used in fluid flow calculations. It expresses the relationship between a local pressure drop caused by a restriction and the kinetic energy per volume of the flow, and is used to characterize energy losses in the flow, where a perfect frictionless flow corresponds to an Euler number of 0.

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  9. Talk:Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Talk:Euler_equations...

    (I know that the ideal gas law isn't correct in itself but if one wants to use the ideal gas law, one should use it correctly or have to make the assumptions, and check their validity, themself.) Per Öberg - Nov 15 2007 (With minor changes Nov 21) —Preceding unsigned comment added by 130.236.50.246 09:23, 15 November 2007 (UTC)