When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    This case always occurs as a degenerate conic in a pencil of circles. However, in other contexts it is not considered as a degenerate conic, as its equation is not of degree 2. The case of coincident lines occurs if and only if the rank of the 3×3 matrix is 1; in all other degenerate cases its rank is 2. [3]: p.108

  3. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    A degenerate case thus has special features which makes it non-generic, or a special case. However, not all non-generic or special cases are degenerate. For example, right triangles, isosceles triangles and equilateral triangles are non-generic and non-degenerate. In fact, degenerate cases often correspond to singularities, either in the object ...

  4. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...

  5. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    If a set of points is not in general linear position, it is called a degenerate case or degenerate configuration, which implies that they satisfy a linear relation that need not always hold. A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    To distinguish the degenerate cases from the non-degenerate cases (including the empty set with the latter) using matrix notation, let β be the determinant of the 3 × 3 matrix of the conic section—that is, β = (AC − ⁠ B 2 / 4 ⁠)F + ⁠ BED − CD 2 − AE 2 / 4 ⁠; and let α = B 2 − 4AC be the discriminant.

  7. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    If the conic is a circle, then another degenerate case says that for a triangle, the three points that appear as the intersection of a side line with the corresponding side line of the Gergonne triangle, are collinear. Six is the minimum number of points on a conic about which special statements can be made, as five points determine a conic.

  8. Steiner's conic problem - Wikipedia

    en.wikipedia.org/wiki/Steiner's_conic_problem

    The space of (possibly degenerate) conics in the complex projective plane CP 2 can be identified with the complex projective space CP 5 (since each conic is defined by a homogeneous degree-2 polynomial in three variables, with 6 complex coefficients, and multiplying such a polynomial by a non-zero complex number does not change the conic).

  9. Cramer's theorem (algebraic curves) - Wikipedia

    en.wikipedia.org/wiki/Cramer's_theorem_(algebraic...

    Likewise, a non-degenerate conic (polynomial equation in x and y with the sum of their powers in any term not exceeding 2, hence with degree 2) is uniquely determined by 5 points in general position (no three of which are on a straight line). The intuition of the conic case is this: Suppose the given points fall on, specifically, an ellipse.