Search results
Results From The WOW.Com Content Network
In August 2018, a Chinese research group announced new measurements based on torsion balances, 6.674 184 (78) × 10 −11 m 3 ⋅kg −1 ⋅s −2 and 6.674 484 (78) × 10 −11 m 3 ⋅kg −1 ⋅s −2 based on two different methods. [47] These are claimed as the most accurate measurements ever made, with standard uncertainties cited as low as ...
However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes.
In SI units, this acceleration is expressed in metres per second squared (in symbols, m/s 2 or m·s −2) or equivalently in newtons per kilogram (N/kg or N·kg −1). Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures , is 9.8 m/s 2 (32 ft/s 2 ).
The following are a list of spacecraft with a mass greater than 8,000 kg (17,637 lb), or the top three to any other orbit including a planetary orbit, or the top three of a specific category of vehicle, or the heaviest vehicle from a specific nation. All numbers listed below for satellites use their mass at launch, if not otherwise stated.
phys: approximate power of gravitational radiation emitted by a 1000 kg satellite in geosynchronous orbit around the Earth. 10 −24: yocto-(yW) 1 × 10 −24: −210 dBm 10 −21: zepto-(zW) 1 × 10 −21: −180 dBm biomed: approximate lowest recorded power consumption of a deep-subsurface marine microbe [3] 10 −20: 1 × 10 −20: −170 dBm
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The kilogram-force (kgf or kg F), or kilopond (kp, from Latin: pondus, lit. 'weight'), is a non-standard gravitational metric unit of force . It is not accepted for use with the International System of Units (SI) [ 1 ] and is deprecated for most uses.
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J⋅s, which is equal to kg⋅m 2 ⋅s −1, where the metre and the second are defined in terms of c and Δν Cs. —