Ads
related to: examples of points and lines in math problems with solutions 5th level of learning
Search results
Results From The WOW.Com Content Network
Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.
Let L = (P, G, I) be an incidence structure, for which the elements of P are called points and the elements of G are called lines. L is a linear space if the following three axioms hold: (L1) two distinct points are incident with exactly one line. (L2) every line is incident to at least two distinct points. (L3) L contains at least two distinct ...
Given a point and a line, there is a unique line which contains the point and is parallel to the line. Parallelism is an equivalence relation on the lines of an affine plane. Since no concepts other than those involving the relationship between points and lines are involved in the axioms, an affine plane is an object of study belonging to ...
In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve).There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.
Lines that meet at the same point are said to be concurrent. The set of all lines in a plane incident with the same point is called a pencil of lines centered at that point. The computation of the intersection of two lines shows that the entire pencil of lines centered at a point is determined by any two of the lines that intersect at that point.
Adding four new points, each being added to all the lines of a single parallel class (so all of these lines now intersect), and one new line containing just these four new points produces the projective plane of order three, a (13 4) configuration. Conversely, starting with the projective plane of order three (it is unique) and removing any ...