When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Base (topology) - Wikipedia

    en.wikipedia.org/wiki/Base_(topology)

    The set Γ of all open intervals in forms a basis for the Euclidean topology on .. A non-empty family of subsets of a set X that is closed under finite intersections of two or more sets, which is called a π-system on X, is necessarily a base for a topology on X if and only if it covers X.

  3. Subbase - Wikipedia

    en.wikipedia.org/wiki/Subbase

    Thus, we can start with a fixed topology and find subbases for that topology, and we can also start with an arbitrary subcollection of the power set ℘ and form the topology generated by that subcollection. We can freely use either equivalent definition above; indeed, in many cases, one of the two conditions is more useful than the other.

  4. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    The standard topology on R is generated by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set.

  5. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    For any indexed family of topological spaces, the product can be given the product topology, which is generated by the inverse images of open sets of the factors under the projection mappings. For example, in finite products, a basis for the product topology consists of all products of open sets.

  6. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    The finest topology on X is the discrete topology; this topology makes all subsets open. The coarsest topology on X is the trivial topology; this topology only admits the empty set and the whole space as open sets. In function spaces and spaces of measures there are often a number of possible topologies.

  7. Locally convex topological vector space - Wikipedia

    en.wikipedia.org/wiki/Locally_convex_topological...

    In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets.

  8. Order topology - Wikipedia

    en.wikipedia.org/wiki/Order_topology

    Though the subspace topology of Y = {−1} ∪ {1/n } n∈N in the section above is shown not to be generated by the induced order on Y, it is nonetheless an order topology on Y; indeed, in the subspace topology every point is isolated (i.e., singleton {y} is open in Y for every y in Y), so the subspace topology is the discrete topology on Y (the topology in which every subset of Y is open ...

  9. Spaces of test functions and distributions - Wikipedia

    en.wikipedia.org/wiki/Spaces_of_test_functions...

    The space of distributions, being defined as the continuous dual space of (), is then endowed with the (non-metrizable) strong dual topology induced by () and the canonical LF-topology (this topology is a generalization of the usual operator norm induced topology that is placed on the continuous dual spaces of normed spaces).