Search results
Results From The WOW.Com Content Network
Given a topological space (,), a base [2] (or basis [3]) for the topology (also called a base for if the topology is understood) is a family of open sets such that every open set of the topology can be represented as the union of some subfamily of .
The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set. More generally, the Euclidean spaces R n can be given
The following sets will constitute the basic open subsets of topologies on spaces of linear maps. For any subsets and , let (,):= {: ()}.. The family {(,):,} forms a neighborhood basis [1] at the origin for a unique translation-invariant topology on , where this topology is not necessarily a vector topology (that is, it might not make into a TVS).
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
The second subbase generates the usual topology as well, since the open intervals (,) with , rational, are a basis for the usual Euclidean topology. The subbase consisting of all semi-infinite open intervals of the form ( − ∞ , a ) {\displaystyle (-\infty ,a)} alone, where a {\displaystyle a} is a real number, does not generate the usual ...
A given set may have many different topologies. If a set is given a different topology, it is viewed as a different topological space. Any set can be given the discrete topology in which every subset is open. The only convergent sequences or nets in this topology are those that are eventually constant.
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
An alternative basis for the product topology can be given in terms of trees. The basic open sets can be characterized as: If a finite sequence of natural numbers {w i : i < n} is selected, then the set of all infinite sequences of natural numbers that have value w i at position i for all i < n is a basic open set. Every open set is a countable ...