When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is a supervised machine learning algorithm widely used for binary classification tasks, such as identifying whether an email is spam or not and diagnosing diseases by assessing the presence or absence of specific conditions based on patient test results. This approach utilizes the logistic (or sigmoid) function to transform ...

  3. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  4. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    Conditional logistic regression is available in R as the function clogit in the survival package. It is in the survival package because the log likelihood of a conditional logistic model is the same as the log likelihood of a Cox model with a particular data structure. [3]

  5. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]

  6. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    In statistics and, in particular, in the fitting of linear or logistic regression models, the elastic net is a regularized regression method that linearly combines the L 1 and L 2 penalties of the lasso and ridge methods. Nevertheless, elastic net regularization is typically more accurate than both methods with regard to reconstruction. [1]

  7. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.

  8. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.

  9. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.