Search results
Results From The WOW.Com Content Network
Logistic regression is a supervised machine learning algorithm widely used for binary classification tasks, such as identifying whether an email is spam or not and diagnosing diseases by assessing the presence or absence of specific conditions based on patient test results. This approach utilizes the logistic (or sigmoid) function to transform ...
Exact logistic regression: theory and examples. Statistics in Medicine, 14: 2143–2160. Mehta CR, Patel NR and Gray R. 1985. On computing an exact confidence interval for the common odds ratio in several 2 x 2 contingency tables. Journal of the American Statistical Association, 80(392): 969–973. Weerahandi, S. 1995.
Logistic regression as described above works satisfactorily when the number of strata is small relative to the amount of data. If we hold the number of strata fixed and increase the amount of data, estimates of the model parameters ( α i {\displaystyle \alpha _{i}} for each stratum and the vector β {\displaystyle {\boldsymbol {\beta ...
An approach to "fix" problems with ML estimation is the use of regularization (or "continuity corrections"). [4] [5] In particular, in case of a logistic regression problem, the use of exact logistic regression or Firth logistic regression, a bias-reduction method based on a penalized likelihood, may be an option.
In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...
McNemar's test is a statistical test used on paired nominal data.It is applied to 2 × 2 contingency tables with a dichotomous trait, with matched pairs of subjects, to determine whether the row and column marginal frequencies are equal (that is, whether there is "marginal homogeneity").
IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.
In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]