When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is a supervised machine learning algorithm widely used for binary classification tasks, such as identifying whether an email is spam or not and diagnosing diseases by assessing the presence or absence of specific conditions based on patient test results. This approach utilizes the logistic (or sigmoid) function to transform ...

  3. Exact statistics - Wikipedia

    en.wikipedia.org/wiki/Exact_statistics

    Exact logistic regression: theory and examples. Statistics in Medicine, 14: 2143–2160. Mehta CR, Patel NR and Gray R. 1985. On computing an exact confidence interval for the common odds ratio in several 2 x 2 contingency tables. Journal of the American Statistical Association, 80(392): 969–973. Weerahandi, S. 1995.

  4. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    Logistic regression as described above works satisfactorily when the number of strata is small relative to the amount of data. If we hold the number of strata fixed and increase the amount of data, estimates of the model parameters ( α i {\displaystyle \alpha _{i}} for each stratum and the vector β {\displaystyle {\boldsymbol {\beta ...

  5. Separation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Separation_(statistics)

    An approach to "fix" problems with ML estimation is the use of regularization (or "continuity corrections"). [4] [5] In particular, in case of a logistic regression problem, the use of exact logistic regression or Firth logistic regression, a bias-reduction method based on a penalized likelihood, may be an option.

  6. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  7. McNemar's test - Wikipedia

    en.wikipedia.org/wiki/McNemar's_test

    McNemar's test is a statistical test used on paired nominal data.It is applied to 2 × 2 contingency tables with a dichotomous trait, with matched pairs of subjects, to determine whether the row and column marginal frequencies are equal (that is, whether there is "marginal homogeneity").

  8. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  9. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]