Search results
Results From The WOW.Com Content Network
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
Cellular respiration is a vital process that occurs in the cells of all living organisms. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]
The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin. [ 1 ] The terms aerobic respiration , anaerobic respiration and fermentation ( substrate-level phosphorylation ) do not refer to primary nutritional groups, but simply reflect the different use of possible electron acceptors in ...
Anaerobic respiration is correspondingly less efficient than aerobic respiration. In the absence of oxygen, not all of the carbon-carbon bonds in glucose can be broken to release energy. A great deal of extractable energy is left in the waste products. Anaerobic respiration generally occurs in prokaryotes in environments that do not contain oxygen.
3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically. They gather mostly at the top because aerobic respiration generates more ATP than either fermentation or anaerobic respiration. 4: Microaerophiles need oxygen because they cannot ferment or respire anaerobically. However ...
3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically. They gather mostly at the top because aerobic respiration generates more ATP than either fermentation or anaerobic respiration. 4: Microaerophiles need oxygen because they cannot ferment or respire anaerobically. However ...
Facultative anaerobes can grow with or without oxygen because they can metabolize energy aerobically or anaerobically. They gather mostly at the top because aerobic respiration generates more adenosine triphosphate (ATP) than either fermentation or anaerobic respiration. Microaerophiles need oxygen because they cannot ferment or respire ...
3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically. They gather mostly at the top because aerobic respiration generates more ATP than either fermentation or anaerobic respiration. 4: Microaerophiles need oxygen because they cannot ferment or respire anaerobically. However ...