Search results
Results From The WOW.Com Content Network
The Eulerian specification of the flow field is a way of looking at fluid motion that focuses on specific locations in the space through which the fluid flows as time passes. [ 1 ] [ 2 ] This can be visualized by sitting on the bank of a river and watching the water pass the fixed location.
A simple diagram of the transition from a stable flow to a turbulent flow. a) stable, b) turbulent. In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows.
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
The plug flow reactor model (PFR, sometimes called continuous tubular reactor, CTR, or piston flow reactors) is a model used to describe chemical reactions in continuous, flowing systems of cylindrical geometry. The PFR model is used to predict the behavior of chemical reactors of such design, so that key reactor variables, such as the ...
In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no boundary layer adjacent to the inner wall of the pipe.
A hydrologic model is a simplification of a real-world system (e.g., surface water, soil water, wetland, groundwater, estuary) that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.
Rheology (/ r iː ˈ ɒ l ə dʒ i /; from Greek ῥέω (rhéō) 'flow' and -λoγία (-logia) 'study of') is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force.
Diagram showing definitions and directions for Darcy's law. A is the cross sectional area (m 2) of the cylinder. Q is the flow rate (m 3 /s) of the fluid flowing through the area A. The flux of fluid through A is q = Q/A. L is the length of the cylinder. Δp = p outlet - p inlet = p b - p a.