When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If any one of these is changed (such as rotating axes instead of vectors, a passive transformation), then the inverse of the example matrix should be used, which coincides with its transpose. Since matrix multiplication has no effect on the zero vector (the coordinates of the origin), rotation matrices describe rotations about the origin.

  4. Transformation (function) - Wikipedia

    en.wikipedia.org/wiki/Transformation_(function)

    In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [ 2 ] [ 3 ] [ 4 ] Examples include linear transformations of vector spaces and geometric transformations , which include projective transformations , affine transformations , and ...

  5. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    The map is called a regular coordinate transformation or regular variable substitution, where regular refers to the -ness of . Usually one will write x = Φ ( y ) {\displaystyle x=\Phi (y)} to indicate the replacement of the variable x {\displaystyle x} by the variable y {\displaystyle y} by substituting the value of Φ {\displaystyle \Phi } in ...

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The definitions of eigenvalue and eigenvectors of a linear transformation T remains valid even if the underlying vector space is an infinite-dimensional Hilbert or Banach space. A widely used class of linear transformations acting on infinite-dimensional spaces are the differential operators on function spaces.

  7. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    This means that the inverse function will only give values in the domain of the function, but restricted to a single period. Hence, the range of the inverse function is only half a full circle. Note that one can also use r = x 2 + y 2 θ ′ = 2 arctan ⁡ y x + r {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\\theta '&=2\arctan ...

  8. Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Hadamard_transform

    The Hadamard transform H m is a 2 m × 2 m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2 m real numbers x n into 2 m real numbers X k.The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.

  9. Polynomial transformation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_transformation

    Polynomial transformations have been applied to the simplification of polynomial equations for solution, where possible, by radicals. Descartes introduced the transformation of a polynomial of degree d which eliminates the term of degree d − 1 by a translation of the roots. Such a polynomial is termed depressed. This already suffices to solve ...