Search results
Results From The WOW.Com Content Network
A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...
Three different types of genetic selection. On each graph, the x-axis variable is the type of phenotypic trait and the y-axis variable is the amount of organisms. Group A is the original population and Group B is the population after selection. Top (Graph 1) represents directional selection with one extreme favored.
The MA plot puts the variable M on the y-axis and A on the x-axis and gives a quick overview of the distribution of the data. In many microarray gene expression experiments, an underlying assumption is that most of the genes would not see any change in their expression; therefore, the majority of the points on the y -axis ( M ) would be located ...
If the dependent variable is continuous—either interval level or ratio level, such as a temperature scale or an income scale—then simple regression can be used. If both variables are time series , a particular type of causality known as Granger causality can be tested for, and vector autoregression can be performed to examine the ...
Y (vertical axis) is a function of four factors. The points in the four scatterplots are always the same though sorted differently, i.e. by Z 1, Z 2, Z 3, Z 4 in turn. Note that the abscissa is different for each plot: (−5, +5) for Z 1, (−8, +8) for Z 2, (−10, +10) for Z 3 and Z 4. Z 4 is most important in influencing Y as it imparts more ...
According to Michael Friendly and Daniel Denis, the defining characteristic distinguishing scatter plots from line charts is the representation of specific observations of bivariate data where one variable is plotted on the horizontal axis and the other on the vertical axis. The two variables are often abstracted from a physical representation ...
The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model. Nonlinear models for binary dependent variables include the probit and logit model.
To determine the optimum time spent on a behavior, one can make a graph showing how benefits and costs change with behavior. Optimality is defined as the point where the difference between benefits and costs for a behavior is maximized, which can be done by graphing the benefits and costs on the y-axis and a measure of the behavior on the x-axis.