Search results
Results From The WOW.Com Content Network
However, C is not a subset of C++, [3] and nontrivial C programs will not compile as C++ code without modification. Likewise, C++ introduces many features that are not available in C and in practice almost all code written in C++ is not conforming C code. This article, however, focuses on differences that cause conforming C code to be ill ...
The most vexing parse is a counterintuitive form of syntactic ambiguity resolution in the C++ programming language. In certain situations, the C++ grammar cannot distinguish between the creation of an object parameter and specification of a function's type. In those situations, the compiler is required to interpret the line as a function type ...
In C and C++, constructs such as pointer type conversion and union — C++ adds reference type conversion and reinterpret_cast to this list — are provided in order to permit many kinds of type punning, although some kinds are not actually supported by the standard language.
In computer science, type conversion, [1] [2] type casting, [1] [3] type coercion, [3] and type juggling [4] [5] are different ways of changing an expression from one data type to another. An example would be the conversion of an integer value into a floating point value or its textual representation as a string , and vice versa.
Most C code can easily be made to compile correctly in C++ but there are a few differences that cause some valid C code to be invalid or behave differently in C++. For example, C allows implicit conversion from void * to other pointer types but C++ does not (for type safety reasons).
In class-based programming, downcasting, or type refinement, is the act of casting a base or parent class reference, to a more restricted derived class reference. [1] This is only allowable if the object is already an instance of the derived class, and so this conversion is inherently fallible.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code:
On the other hand, this manual loop unrolling expands the source code size from 3 lines to 7, that have to be produced, checked, and debugged, and the compiler may have to allocate more registers to store variables in the expanded loop iteration [dubious – discuss]. In addition, the loop control variables and number of operations inside the ...