When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).

  3. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  4. Totient summatory function - Wikipedia

    en.wikipedia.org/wiki/Totient_summatory_function

    The summatory of reciprocal totient function is defined as ():= = ()Edmund Landau showed in 1900 that this function has the asymptotic behavior (+ ⁡) + + (⁡)where γ is the Euler–Mascheroni constant,

  5. Carmichael function - Wikipedia

    en.wikipedia.org/wiki/Carmichael_function

    The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case λ of the product is the least common multiple of the λ of the prime power factors. Specifically, λ(n) is given by the recurrence

  6. Carmichael's totient function conjecture - Wikipedia

    en.wikipedia.org/wiki/Carmichael's_totient...

    The totient function φ(n) is equal to 2 when n is one of the three values 3, 4, and 6. Thus, if we take any one of these three values as n, then either of the other two values can be used as the m for which φ(m) = φ(n).

  7. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    Euler's totient or phi function, φ(n) is an arithmetic function that counts the number of positive integers less than or equal to n that are relatively prime to n. That is, if n is a positive integer, then φ(n) is the number of integers k in the range 1 ≤ k ≤ n which have no common factor with n other than 1.

  8. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    The degree of , or in other words the number of nth primitive roots of unity, is (), where is Euler's totient function. The fact that Φ n {\displaystyle \Phi _{n}} is an irreducible polynomial of degree φ ( n ) {\displaystyle \varphi (n)} in the ring Z [ x ] {\displaystyle \mathbb {Z} [x]} is a nontrivial result due to Gauss . [ 4 ]

  9. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    For the lack of a widely accepted symbol, we denote the number of kth roots of unity modulo n by (,).It satisfies a number of properties: (,) = for (, ()) = where λ denotes the Carmichael function and denotes Euler's totient function