Search results
Results From The WOW.Com Content Network
A monolithic HPLC column, or monolithic column, is a column used in high-performance liquid chromatography (HPLC). The internal structure of the monolithic column is created in such a way that many channels form inside the column. The material inside the column which separates the channels can be porous and functionalized.
Narrow-bore columns (1–2 mm) are used for applications when more sensitivity is desired either with special UV-vis detectors, fluorescence detection or with other detection methods like liquid chromatography-mass spectrometry. Capillary columns (under 0.3 mm) are used almost exclusively with alternative detection means such as mass spectrometry.
A mobile phase in reversed-phase chromatograpy consists of mixtures of water or aqueous buffers, to which organic solvents are added, to elute analytes from a reversed-phase column in a selective manner. [7] [27] The added organic solvents must be miscible with water, and the two most common organic solvents used are acetonitrile and methanol.
With surface chemistries that are weakly ionic, the choice of pH can affect the ionic nature of the column chemistry. Properly adjusted, the pH can be set to reduce the selectivity toward functional groups with the same charge as the column, or enhance it for oppositely charged functional groups.
The variance per unit length of the column is taken as the ratio of the column length to the column efficiency in theoretical plates. The van Deemter equation is a hyperbolic function that predicts that there is an optimum velocity at which there will be the minimum variance per unit column length and, thence, a maximum efficiency. The van ...
In industrial continuous fractionating columns, N t is determined by starting at either the top or bottom of the column and calculating material balances, heat balances and equilibrium flash vaporizations for each of the succession of equilibrium stages until the desired end product composition is achieved.
Typically the second column has a different separation mechanism, so that bands that are poorly resolved from the first column may be completely separated in the second column. (For instance, a C18 reversed-phase chromatography column may be followed by a phenyl column.) Alternately, the two columns might run at different temperatures.
In simple manual columns, the eluent is collected in constant volumes, known as fractions. The more similar the particles are in size the more likely they are in the same fraction and not detected separately. More advanced columns overcome this problem by constantly monitoring the eluent.