When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. FAME (database) - Wikipedia

    en.wikipedia.org/wiki/FAME_(database)

    FAME Desktop Add-in for Excel: FAME Desktop is an Excel add-in that supports the =FMD(expression, sd, ed,0, freq, orientation) and =FMS(expression, freq + date) formulas, just as the 4GL command prompt does. These formulas can be placed in Excel spreadsheets and are linked to FAME objects and analytics stored on a FAME server. Sample Excel ...

  3. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

  4. Fan chart (time series) - Wikipedia

    en.wikipedia.org/wiki/Fan_chart_(time_series)

    In time series analysis, a fan chart is a chart that joins a simple line chart for observed past data, by showing ranges for possible values of future data together with a line showing a central estimate or most likely value for the future outcomes. As predictions become increasingly uncertain the further into the future one goes, these ...

  5. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The "forecast" package in R can automatically select an ARIMA model for a given time series with the auto.arima() function [that can often give questionable results] and can also simulate seasonal and non-seasonal ARIMA models with its simulate.Arima() function.

  6. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The CRAN task view on Time Series contains links to most of these. Mathematica has a complete library of time series functions including ARMA. [11] MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.

  7. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  8. Tracking signal - Wikipedia

    en.wikipedia.org/wiki/Tracking_signal

    The tracking signal is then used as the value of the smoothing constant for the next forecast. The idea is that when the tracking signal is large, it suggests that the time series has undergone a shift; a larger value of the smoothing constant should be more responsive to a sudden shift in the underlying signal. [3]

  9. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    This forecasting method is only suitable for time series data. [17] Using the naïve approach, forecasts are produced that are equal to the last observed value. This method works quite well for economic and financial time series, which often have patterns that are difficult to reliably and accurately predict. [17] If the time series is believed ...