Search results
Results From The WOW.Com Content Network
In mathematics and computer science, optimal addition-chain exponentiation is a method of exponentiation by a positive integer power that requires a minimal number of multiplications. Using the form of the shortest addition chain , with multiplication instead of addition, computes the desired exponent (instead of multiple) of the base .
x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1. The algorithm performs a fixed sequence of operations (up to log n): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value. A similar algorithm for ...
Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Unsourced material may be challenged and removed. Find sources: "Computational complexity of mathematical operations" – news · newspapers · books · scholar · JSTOR ( April 2015 ) ( Learn how and when to remove this ...
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
In plain text, the TeX mark-up language, and some programming languages such as MATLAB and Julia, the caret symbol, ^, represents exponents, so x 2 is written as x ^ 2. [ 8 ] [ 9 ] In programming languages such as Ada , [ 10 ] Fortran , [ 11 ] Perl , [ 12 ] Python [ 13 ] and Ruby , [ 14 ] a double asterisk is used, so x 2 is written as x ** 2.
For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.
Kummer's theorem states that the number of carries involved in adding two numbers in base is equal to the exponent of the highest power of dividing a certain binomial coefficient. When several random numbers of many digits are added, the statistics of the carry digits bears an unexpected connection with Eulerian numbers and the statistics of ...
Note that upon entering the loop for the first time, the code variable base is equivalent to b. However, the repeated squaring in the third line of code ensures that at the completion of every loop, the variable base is equivalent to b 2 i mod m, where i is the number of times the loop has been iterated.