When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.

  3. Smoothstep - Wikipedia

    en.wikipedia.org/wiki/Smoothstep

    Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.

  4. Moving least squares - Wikipedia

    en.wikipedia.org/wiki/Moving_least_squares

    Here is a 1D example. The circles are the sample points and the polygon is a linear interpolation. The blue curve is a smooth approximation of order 3. Consider a function : and a set of sample points = {(,) | =}.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  6. Bilinear interpolation - Wikipedia

    en.wikipedia.org/wiki/Bilinear_interpolation

    In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation. It is usually applied to functions sampled on a 2D rectilinear grid , though it can be generalized to functions defined on the vertices of (a mesh of) arbitrary convex quadrilaterals .

  7. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation on the square [,] [,] consisting of 25 unit squares patched together. Bicubic interpolation as per Matplotlib's implementation. Colour indicates function value. The black dots are the locations of the prescribed data being interpolated. Note how the color samples are not radially symmetric.

  8. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    This process yields p 0,4 (x), the value of the polynomial going through the n + 1 data points (x i, y i) at the point x. This algorithm needs O(n 2) floating point operations to interpolate a single point, and O(n 3) floating point operations to interpolate a polynomial of degree n.

  9. Spline interpolation - Wikipedia

    en.wikipedia.org/wiki/Spline_interpolation

    The relations are n − 1 linear equations for the n + 1 values k 0, k 1, ..., k n. For the elastic rulers being the model for the spline interpolation, one has that to the left of the left-most "knot" and to the right of the right-most "knot" the ruler can move freely and will therefore take the form of a straight line with q′′ = 0.