Search results
Results From The WOW.Com Content Network
Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution.Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
If X is a discrete random variable taking values x in the non-negative integers {0,1, ...}, then the probability generating function of X is defined as [1] = = = (),where is the probability mass function of .
Five eight-step random walks from a central point. Some paths appear shorter than eight steps where the route has doubled back on itself. (animated version)In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some mathematical space.
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory.
The expectation of conditioned on the event that lies in an interval [,] is given by [< <] = () (), where and respectively are the density and the cumulative distribution function of . For b = ∞ {\textstyle b=\infty } this is known as the inverse Mills ratio .
In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.
In mathematics, the second moment method is a technique used in probability theory and analysis to show that a random variable has positive probability of being positive. More generally, the "moment method" consists of bounding the probability that a random variable fluctuates far from its mean, by using its moments.