Ads
related to: nitrite oxidoreductase and nadh supplement function in protein
Search results
Results From The WOW.Com Content Network
Nitrite oxidoreductase (NOR or NXR) is an enzyme involved in nitrification.It is the last step in the process of aerobic ammonia oxidation, which is carried out by two groups of nitrifying bacteria: ammonia oxidizers such as Nitrosospira, Nitrosomonas, and Nitrosococcus convert ammonia to nitrite, while nitrite oxidizers such as Nitrobacter and Nitrospira oxidize nitrite to nitrate.
Nitrate reductase (NADH) (EC 1.7.1.1, assimilatory nitrate reductase, NADH-nitrate reductase, NADH-dependent nitrate reductase, assimilatory NADH: nitrate reductase, nitrate reductase (NADH 2), NADH 2: nitrate oxidoreductase) is an enzyme with systematic name nitrite: NAD + oxidoreductase.
The systematic name of this enzyme class is ammonium-hydroxide:NAD(P)+ oxidoreductase. Other names in common use include nitrite reductase (reduced nicotinamide adenine dinucleotide , (phosphate)) , NADH-nitrite oxidoreductase , NADPH-nitrite reductase , assimilatory nitrite reductase , nitrite reductase [NAD(P)H2] , and NAD(P)H2:nitrite ...
Nitric oxide reductase (NAD(P), nitrous oxide-forming) (EC 1.7.1.14, fungal nitric oxide reductase, cytochrome P450nor, NOR (ambiguous)) is an enzyme with systematic name nitrous oxide:NAD(P) oxidoreductase.
Members of this family include oxygen-insensitive NAD(P)H nitroreductase (flavin mononucleotide-dependent nitroreductase) (6,7-dihydropteridine reductase) (EC 1.5.1.34) and NADH dehydrogenase (EC 1.6.99.3). A number of these proteins are described as oxidoreductases.
Nitrate reductase (NAD(P)H) (EC 1.7.1.2, assimilatory nitrate reductase, assimilatory NAD(P)H-nitrate reductase, NAD(P)H bispecific nitrate reductase, nitrate reductase (reduced nicotinamide adenine dinucleotide (phosphate)), nitrate reductase NAD(P)H, NAD(P)H-nitrate reductase, nitrate reductase [NAD(P)H 2], NAD(P)H 2:nitrate oxidoreductase) is an enzyme with systematic name nitrite:NAD(P ...
Both NAD + and NADH strongly absorb ultraviolet light because of the adenine. For example, peak absorption of NAD + is at a wavelength of 259 nanometers (nm), with an extinction coefficient of 16,900 M −1 cm −1. NADH also absorbs at higher wavelengths, with a second peak in UV absorption at 339 nm with an extinction coefficient of 6,220 M ...
Oxidoreductase NAD-binding domain is an evolutionary conserved protein domain [1] present in a variety of proteins that include, bacterial flavohemoprotein, mammalian NADH-cytochrome b5 reductase, eukaryotic NADPH-cytochrome P450 reductase, nitrate reductase from plants, nitric-oxide synthase, bacterial vanillate demethylase and others.