When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Crossover (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Crossover_(evolutionary...

    In uniform crossover, typically, each bit is chosen from either parent with equal probability. [6] Other mixing ratios are sometimes used, resulting in offspring which inherit more genetic information from one parent than the other. In a uniform crossover, we don’t divide the chromosome into segments, rather we treat each gene separately.

  3. Genetic algebra - Wikipedia

    en.wikipedia.org/wiki/Genetic_algebra

    In mathematical genetics, a genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics.Some variations of these algebras are called train algebras, special train algebras, gametic algebras, Bernstein algebras, copular algebras, zygotic algebras, and baric algebras (also called weighted algebra).

  4. Mutation (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Mutation_(evolutionary...

    The classic example of a mutation operator of a binary coded genetic algorithm (GA) involves a probability that an arbitrary bit in a genetic sequence will be flipped from its original state. A common method of implementing the mutation operator involves generating a random variable for each bit in a sequence. This random variable tells whether ...

  5. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    The measurable space and the probability measure arise from the random variables and expectations by means of well-known representation theorems of analysis. One of the important features of the algebraic approach is that apparently infinite-dimensional probability distributions are not harder to formalize than finite-dimensional ones.

  6. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  7. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    In genetics, Bayes' rule can be used to estimate the probability that someone has a specific genotype. Many people seek to assess their chances of being affected by a genetic disease or their likelihood of being a carrier for a recessive gene of interest.

  8. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  9. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...