Search results
Results From The WOW.Com Content Network
A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.
In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve. The Weierstrass function has historically served the role of a pathological function, being the first published ...
For example, the graph of the differentiable function has an inflection point at (x, f(x)) if and only if its first derivative f' has an isolated extremum at x. (this is not the same as saying that f has an extremum). That is, in some neighborhood, x is the one and only point at which f' has a (local) minimum or maximum.
Even a function with a smooth graph is not differentiable at a point where its tangent is vertical: For instance, the function given by () = / is not differentiable at =. In summary, a function that has a derivative is continuous, but there are continuous functions that do not have a derivative.
In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap . A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. [1]
The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.
It states that if f is continuously differentiable, then around most points, the zero set of f looks like graphs of functions pasted together. The points where this is not true are determined by a condition on the derivative of f. The circle, for instance, can be pasted together from the graphs of the two functions ± √ 1 - x 2.
For a radius r > 0, consider the function =, [,]. Its graph is the upper semicircle centered at the origin. This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r.