Search results
Results From The WOW.Com Content Network
Landau's fourth problem asked whether there are infinitely many primes which are of the form = + for integer n. (The list of known primes of this form is A002496 .) The existence of infinitely many such primes would follow as a consequence of other number-theoretic conjectures such as the Bunyakovsky conjecture and Bateman–Horn conjecture .
Comments: The former has been solved by Rajah and Chee (2011) where they showed that for distinct odd primes p 1 < ··· < p m < q < r 1 < ··· < r n, all Moufang loops of order p 1 2 ···p m 2 q 3 r 1 2 ···r n 2 are groups if and only if q is not congruent to 1 modulo p i for each i.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
[12] The no-three-in-line problem also has applications to another problem in discrete geometry, the Heilbronn triangle problem. In this problem, one must place points, anywhere in a unit square, not restricted to a grid. The goal of the placement is to avoid small-area triangles, and more specifically to maximize the area of the smallest ...
Mahler's 3/2 problem that no real number has the property that the fractional parts of (/) are less than / for all positive integers . Montgomery's pair correlation conjecture : the normalized pair correlation function between pairs of zeros of the Riemann zeta function is the same as the pair correlation function of random Hermitian matrices .
A. 2 + 6 + 6 = 14 B. 3 + 3 + 8 = 14. In case 'A', there is no 'eldest child': two children are aged six (although one could be a few minutes or around 9 to 12 months older and they still both be 6). Therefore, when told that one child is the eldest, the census-taker concludes that the correct solution is 'B'. [3]
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.