When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor. As the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector. [5] Under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix ...

  3. Connection form - Wikipedia

    en.wikipedia.org/wiki/Connection_form

    This is the Levi-Civita connection on the tangent bundle TM of M. [2] [3] A local frame on the tangent bundle is an ordered list of vector fields e = (e i | i = 1, 2, ..., n), where n = dim M, defined on an open subset of M that are linearly independent at every point of their domain. The Christoffel symbols define the Levi-Civita connection by

  4. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

  5. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    A Riemannian connection that is torsion-free (i.e., for which the torsion tensor vanishes: T α βγ = 0) is a Levi-Civita connection. The Γ α βγ for a Levi-Civita connection in a coordinate basis are called Christoffel symbols of the second kind.

  6. Kronecker delta - Wikipedia

    en.wikipedia.org/wiki/Kronecker_delta

    The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...

  7. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  8. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    where is the Kronecker delta or identity matrix. Finite-dimensional real vector spaces with (pseudo-)metrics are classified up to signature, a coordinate-free property which is well-defined by Sylvester's law of inertia. Possible metrics on real space are indexed by signature (,).

  9. Mixed tensor - Wikipedia

    en.wikipedia.org/wiki/Mixed_tensor

    As an example, a mixed tensor of type (1, 2) can be obtained by raising an index of a covariant tensor of type (0, 3), =, where is the same tensor as , because =, with Kronecker δ acting here like an identity matrix.