Ads
related to: upstream and downstream math problems and answers for 9th grade
Search results
Results From The WOW.Com Content Network
To help visualize the relationship of the upstream Froude number and the flow depth downstream of the hydraulic jump, it is helpful to plot y 2 /y 1 versus the upstream Froude Number, Fr 1. (Figure 8) The value of y 2 /y 1 is a ratio of depths that represent a dimensionless jump height; for example, if y 2 /y 1 = 2, then the jump doubles the ...
The HEC-RAS model calculated that the water backs up to a height of 9.21 meters at the upstream side of the sluice gate, which is the same as the manually calculated value. Normal depth was achieved at approximately 1,700 meters upstream of the gate. HEC-RAS modeled the hydraulic jump to occur 18 meters downstream of the sluice gate.
Figure 4: An undular front on a tidal bore. At this point the water is relatively deep and the fractional change in elevation is small. A tidal bore is a hydraulic jump which occurs when the incoming tide forms a wave (or waves) of water that travel up a river or narrow bay against the direction of the current. [16]
Parshall flume submerged flow example problem: Using the Parshall flume flow equations and Tables 1-3, determine the flow type (free flow or submerged flow) and discharge for a 36-inch flume with an upstream depth, Ha of 1.5 ft and a downstream depth, H b of 1.4 ft. For reference of locations H a and H b, refer to Figure 1.
The water in this stream forms varying currents as it makes its way downhill. In hydrology, a current in a water body is the flow of water in any one particular direction. The current varies spatially as well as temporally, dependent upon the flow volume of water, stream gradient, and channel geometry.
The dynamic pressure at the upstream stagnation point has value of 1 / 2 ρU 2. a value needed to decelerate the free stream flow of speed U. This same value appears at the downstream stagnation point, this high pressure is again needed to decelerate the flow to zero speed. This symmetry arises only because the flow is completely ...