Ads
related to: preimage of a function examples geometry questions
Search results
Results From The WOW.Com Content Network
In mathematics, for a function :, the image of an input value is the single output value produced by when passed . The preimage of an output value y {\displaystyle y} is the set of input values that produce y {\displaystyle y} .
In mathematics, particularly in the field of differential topology, the preimage theorem is a variation of the implicit function theorem concerning the preimage of particular points in a manifold under the action of a smooth map. [1] [2]
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
Let : be any function. If is any set then its preimage := under is necessarily an -saturated set.In particular, every fiber of a map is an -saturated set.. The empty set = and the domain = are always saturated.
A function : is monotone in this topological sense if and only if it is non-increasing or non-decreasing, which is the usual meaning of "monotone function" in real analysis. A function between topological spaces is (sometimes) called a proper map if every fiber is a compact subspace of its domain. However, many authors use other non-equivalent ...
This function maps each image to its unique preimage. The composition of two bijections is again a bijection, but if g ∘ f {\displaystyle g\circ f} is a bijection, then it can only be concluded that f {\displaystyle f} is injective and g {\displaystyle g} is surjective (see the figure at right and the remarks above regarding injections and ...
In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable.
Nowhere continuous function: is not continuous at any point of its domain; for example, the Dirichlet function. Homeomorphism: is a bijective function that is also continuous, and whose inverse is continuous. Open function: maps open sets to open sets. Closed function: maps closed sets to closed sets.