When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    For the function that maps a Person to their Favorite Food, the image of Gabriela is Apple. The preimage of Apple is the set {Gabriela, Maryam}. The preimage of Fish is the empty set. The image of the subset {Richard, Maryam} is {Rice, Apple}. The preimage of {Rice, Apple} is {Gabriela, Richard, Maryam}.

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    As another example, any non-constant function : is non-measurable with respect to the trivial -algebra = {,}, since the preimage of any point in the range is some proper, nonempty subset of , which is not an element of the trivial .

  4. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    This function maps each image to its unique preimage. The composition of two bijections is again a bijection, but if g ∘ f {\displaystyle g\circ f} is a bijection, then it can only be concluded that f {\displaystyle f} is injective and g {\displaystyle g} is surjective (see the figure at right and the remarks above regarding injections and ...

  5. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    A function : is monotone in this topological sense if and only if it is non-increasing or non-decreasing, which is the usual meaning of "monotone function" in real analysis. A function between topological spaces is (sometimes) called a proper map if every fiber is a compact subspace of its domain. However, many authors use other non-equivalent ...

  6. List of types of functions - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_functions

    Nowhere continuous function: is not continuous at any point of its domain; for example, the Dirichlet function. Homeomorphism: is a bijective function that is also continuous, and whose inverse is continuous. Open function: maps open sets to open sets. Closed function: maps closed sets to closed sets.

  7. Saturated set - Wikipedia

    en.wikipedia.org/wiki/Saturated_set

    Let : be any function. If is any set then its preimage := under is necessarily an -saturated set.In particular, every fiber of a map is an -saturated set.. The empty set = and the domain = are always saturated.

  8. Function of a real variable - Wikipedia

    en.wikipedia.org/wiki/Function_of_a_real_variable

    A complex-valued function of a real variable may be defined by relaxing, in the definition of the real-valued functions, the restriction of the codomain to the real numbers, and allowing complex values. If f(x) is such a complex valued function, it may be decomposed as f(x) = g(x) + ih(x), where g and h are real-valued functions. In other words ...

  9. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    However, this function is not injective (and hence not bijective), since, for example, the pre-image of y = 2 is {x = −1, x = 2}. (In fact, the pre-image of this function for every y, −2 ≤ y ≤ 2 has more than one element.) The function g : R → R defined by g(x) = x 2 is not surjective, since there is no real number x such that x 2 = −1.