When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    Solving the characteristic equation for its roots, r 1, ..., r n, allows one to find the general solution of the differential equation. The roots may be real or complex, as well as distinct or repeated. If a characteristic equation has parts with distinct real roots, h repeated roots, or k complex roots corresponding to general solutions of y D ...

  3. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    which is the characteristic equation of the recurrence relation. Solve for to obtain the two roots , : these roots are known as the characteristic roots or eigenvalues of the characteristic equation. Different solutions are obtained depending on the nature of the roots: If these roots are distinct, we have the general solution

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor (possibly negative). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those ...

  5. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory , the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix .

  6. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]

  7. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    The importance of the criterion is that the roots p of the characteristic equation of a linear system with negative real parts represent solutions e pt of the system that are stable . Thus the criterion provides a way to determine if the equations of motion of a linear system have only stable solutions, without solving the system directly.

  8. Hurwitz polynomial - Wikipedia

    en.wikipedia.org/wiki/Hurwitz_polynomial

    A polynomial function P(s) of a complex variable s is said to be Hurwitz if the following conditions are satisfied: P(s) is real when s is real. The roots of P(s) have real parts which are zero or negative. Hurwitz polynomials are important in control systems theory, because they represent the characteristic equations of stable linear systems.

  9. Stable polynomial - Wikipedia

    en.wikipedia.org/wiki/Stable_polynomial

    Stable polynomials arise in control theory and in mathematical theory of differential and difference equations. A linear, time-invariant system (see LTI system theory) is said to be BIBO stable if every bounded input produces bounded output. A linear system is BIBO stable if its characteristic polynomial is stable.