Ad
related to: simple stress and straincorporatetrainingmaterials.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress change sign, and the stress is called compressive stress.
The stress and strain can be normal, shear, or a mixture, and can also can be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stress–strain curve typically refers to the relationship between axial normal stress ...
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.
A rod under torsion is a practical example for a body under simple shear. [5] If e 1 is the fixed reference orientation in which line elements do not deform during the deformation and e 1 − e 2 is the plane of deformation, then the deformation gradient in simple shear can be expressed as
The relationship between stress and strain can be simplified for specific stress or strain rates. For high stress or strain rates/short time periods, the time derivative components of the stress–strain relationship dominate. In these conditions it can be approximated as a rigid rod capable of sustaining high loads without deforming.
The (infinitesimal) strain tensor (symbol ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components."
All of these properties indicate the importance of calculating the true stress-strain curve for further analyzing the behavior of materials in sudden environment. 4) A graphical method, so-called "Considere construction", can help determine the behavior of stress-strain curve whether necking or drawing happens on the sample.