Search results
Results From The WOW.Com Content Network
For a semicircle with a diameter of a + b, the length of its radius is the arithmetic mean of a and b (since the radius is half of the diameter). The geometric mean can be found by dividing the diameter into two segments of lengths a and b, and then connecting their common endpoint to the semicircle with a segment perpendicular to the diameter ...
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
In the design of windows or doors with rounded tops, c and h may be the only known values and can be used to calculate R for the draftsman's compass setting. One can reconstruct the full dimensions of a complete circular object from fragments by measuring the arc length and the chord length of the fragment. To check hole positions on a circular ...
Upper semicircle with radius 1 and center ... the Pythagorean theorem can be used to calculate the radius of the unique circle that will fit around the two lines: ...
Therefore, the area of a circle of radius r, which is twice the area of the semi-circle, is equal to =. This particular proof may appear to beg the question, if the sine and cosine functions involved in the trigonometric substitution are regarded as being defined in relation to circles.
The line segments OT 1 and OT 2 are radii of the circle C; since both are inscribed in a semicircle, they are perpendicular to the line segments PT 1 and PT 2, respectively. But only a tangent line is perpendicular to the radial line. Hence, the two lines from P and passing through T 1 and T 2 are tangent to the circle C.
The moment of inertia for a semicircle, best expressed in cylindrical coordinates, is = (,,).Solving the integral, one finds that the moment of inertia of a semicircle is =, exactly the same for a hoop of the same radius.