When.com Web Search

  1. Ads

    related to: infinitely many sine factors calculator graph

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    In particular, in these two identities an asymmetry appears that is not seen in the case of sums of finitely many angles: in each product, there are only finitely many sine factors but there are cofinitely many cosine factors. Terms with infinitely many sine factors would necessarily be equal to zero. When only finitely many of the angles are ...

  3. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    If the denominator, b, is multiplied by additional factors of 2, the sine and cosine can be derived with the half-angle formulas. For example, 22.5° (π /8 rad) is half of 45°, so its sine and cosine are: [11]

  4. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula states that, for any real number x, one has = ⁡ + ⁡, where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x ("cosine plus i sine").

  5. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    Applications of the harmonic series and its partial sums include Euler's proof that there are infinitely many prime numbers, the analysis of the coupon collector's problem on how many random trials are needed to provide a complete range of responses, the connected components of random graphs, the block-stacking problem on how far over the edge ...

  6. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    This was proved by Leonhard Euler in 1737, [1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).

  7. Hadamard factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Hadamard_factorization_theorem

    Otherwise, has infinitely many roots. This is the tricky part and requires splitting into two cases. This is the tricky part and requires splitting into two cases. First show that g ≤ floor ( ρ ) {\displaystyle g\leq {\text{floor}}(\rho )} , then show that ρ ≤ g + 1 {\displaystyle \rho \leq g+1} .

  8. Dottie number - Wikipedia

    en.wikipedia.org/wiki/Dottie_number

    The name of the constant originates from a professor of French named Dottie who observed the number by repeatedly pressing the cosine button on her calculator. [2] [nb 1] The Dottie number, for which an exact series expansion can be obtained using the Faà di Bruno formula, has interesting connections with the Kepler and Bertrand's circle ...

  9. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.