Search results
Results From The WOW.Com Content Network
The Dieckmann condensation, where a molecule with two ester groups reacts intramolecularly, forming a cyclic β-keto ester. In this case, the ring formed must not be strained, usually a 5- or 6-membered chain or ring. Retro-Claisen condensation is the reverse of the title reaction, i.e., the base-induced cleavage of 2-ketoesters
It can be considered as a specific variation of the aldol condensation. This reaction is named after two of its pioneering investigators Rainer Ludwig Claisen and J. Gustav Schmidt, who independently published on this topic in 1880 and 1881. [1] [2] [3] An example is the synthesis of dibenzylideneacetone ((1E, 4E)-1,5-diphenylpenta-1,4-dien-3 ...
Many variations of condensation reactions exist. Common examples include the aldol condensation and the Knoevenagel condensation, which both form water as a by-product, as well as the Claisen condensation and the Dieckman condensation (intramolecular Claisen condensation), which form alcohols as by-products. [5]
The Claisen condensation involves the reaction of an ester enolate and an ester to form a beta-keto ester. Crossed Claisen condensations, in which the enolate and nucleophile are different esters, are also possible. An intramolecular Claisen condensation is called a Dieckmann condensation or
The ACP-bound elongation group reacts in a Claisen condensation with the KS-bound polyketide chain under CO 2 evolution, leaving a free KS domain and an ACP-bound elongated polyketide chain. The reaction takes place at the KS n-bound end of the chain, so that the chain moves out one position and the elongation group becomes the new bound group.
The reaction is known as the Claisen reaction and was described by Claisen for the first time in 1890. Discovered the thermally induced rearrangement of allyl phenyl ether in 1912. He details its reaction mechanism in his last scientific publication (1925). In his honor, the reaction has been named the Claisen rearrangement.
The reaction proceeds as such: acyl-[acyl-carrier protein] + a malonyl-[acyl-carrier protein] → a 3-oxoacyl-[acyl-carrier protein] + CO2 + an [acyl-carrier protein] In Escherichia coli, for example, this enzyme is used to construct fatty acyl chains through a three step Claisen condensation reaction. The reaction will start with a trans ...
n/a n/a Ensembl n/a n/a UniProt n a n/a RefSeq (mRNA) n/a n/a RefSeq (protein) n/a n/a Location (UCSC) n/a n/a PubMed search n/a n/a Wikidata View/Edit Human Fatty acid synthase (FAS) is an enzyme that in humans is encoded by the FASN gene. Fatty acid synthase is a multi-enzyme protein that catalyzes fatty acid synthesis. It is not a single enzyme but a whole enzymatic system composed of two ...