Ads
related to: how to calculate soil ph from concentration
Search results
Results From The WOW.Com Content Network
Effect of soil pH on cation-exchange capacity. The amount of negative charge from deprotonation of clay hydroxy groups or organic matter depends on the pH of the surrounding solution. Increasing the pH (i.e. decreasing the concentration of H + cations) increases this variable charge, and therefore also increases the cation-exchange capacity.
The soil pH usually increases when the total alkalinity increases, but the balance of the added cations also has a marked effect on the soil pH. For example, increasing the amount of sodium in an alkaline soil tends to induce dissolution of calcium carbonate , which increases the pH.
The pH of a solution is defined as the negative logarithm of the concentration of H+, and the pOH is defined as the negative logarithm of the concentration of OH-. For example, the pH of a 0.01M solution of hydrochloric acid (HCl) is equal to 2 (pH = −log 10 (0.01)), while the pOH of a 0.01M solution of sodium hydroxide (NaOH) is equal to 2 ...
Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water.. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. [1]
The sodium adsorption ratio (SAR) is an irrigation water quality parameter used in the management of sodium-affected soils.It is an indicator of the suitability of water for use in agricultural irrigation, as determined from the concentrations of the main alkaline and earth alkaline cations present in the water.
In the dispersed [clarification needed] soil structure, the plant roots are unable to spread deeper into the soil due to lack of moisture. However, high RSC index water does not enhance the osmotic pressure to impede the off take of water by the plant roots unlike high salinity water.