When.com Web Search

  1. Ads

    related to: special right triangle worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one ...

  3. File:30° 60° 90° Special Right Triangle.svg - Wikipedia

    en.wikipedia.org/wiki/File:30°_60°_90°_Special...

    English: This file illustrates the special right triangle of angles 30°, 60° and 90°. A black square represents the borders of the file. Inside, the triangle is depicted with all of its special angles. The right angle is symbolized by a small square, and its measure, 90°, is written to the right and above it.

  4. File:45° 45° 90° Special Right Triangle.svg - Wikipedia

    en.wikipedia.org/wiki/File:45°_45°_90°_Special...

    Français : Ce fichier illustre le triangle particulier d'angles 45°, 45° et 90°. Dans celui-ci, le triangle est représenté avec tous ses angles et ses longueurs. L'angle droit est marqué d'un petit carré. À droite de l'angle droit, il y a un angle symbolisé par un arc, et sa mesure, 45°, est inscrite à gauche de l'arc.

  5. File:45-45-triangle.svg - Wikipedia

    en.wikipedia.org/wiki/File:45-45-triangle.svg

    Special pages; Printable version; Page information; ... == Summary == Diagram demonstrating the ratios of the sides of a 30-60-90 special right triangle. Created in ...

  6. File:Special right triangles for trig.svg - Wikipedia

    en.wikipedia.org/wiki/File:Special_right...

    English: Special right triangles in a unit circle are helpful for remembering trig functions of multiples of 30 and 45 degrees. This figure illustrates cos(30) = sin ...

  7. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    Pyramids and bipyramids are polyhedra with polygonal bases and triangles for lateral faces; the triangles are isosceles whenever they are right pyramids and bipyramids. The Kleetope of a polyhedron is a new polyhedron made by replacing each face of the original with a pyramid, and so the faces of a Kleetope will be triangles. [ 15 ]