Search results
Results From The WOW.Com Content Network
In computer science, a substring index is a data structure which gives substring search in a text or text collection in sublinear time. Once constructed from a document or set of documents, a substring index can be used to locate all occurrences of a pattern in time linear or near-linear in the pattern size, with no dependence or only logarithmic dependence on the document size.
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
The picture shows two strings where the problem has multiple solutions. Although the substring occurrences always overlap, it is impossible to obtain a longer common substring by "uniting" them. The strings "ABABC", "BABCA" and "ABCBA" have only one longest common substring, viz. "ABC" of length 3.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
After computing E(i, j) for all i and j, we can easily find a solution to the original problem: it is the substring for which E(m, j) is minimal (m being the length of the pattern P.) Computing E ( m , j ) is very similar to computing the edit distance between two strings.
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
We assume all the substrings have a fixed length m. A naïve way to search for k patterns is to repeat a single-pattern search taking O(n+m) time, totaling in O((n+m)k) time. In contrast, the above algorithm can find all k patterns in O(n+km) expected time, assuming that a hash table check works in O(1) expected time.
The best case is the same as for the Boyer–Moore string-search algorithm in big O notation, although the constant overhead of initialization and for each loop is less. The worst case behavior happens when the bad character skip is consistently low (with the lower limit of 1 byte movement) and a large portion of the needle matches the haystack.