Search results
Results From The WOW.Com Content Network
These formulas show that the expected arrival time of the fastest particle is in dimension 1 and 2, O(1/\log(N)). They should be used instead of the classical forward rate in models of activation in biochemical reactions. The method to derive formulas is based on short-time asymptotic and the Green's function representation of the Helmholtz ...
In ecology, functional equivalence (or functional redundancy) is the ecological phenomenon that multiple species representing a variety of taxonomic groups can share similar, if not identical, roles in ecosystem functionality (e.g., nitrogen fixers, algae scrapers, scavengers). [1] This phenomenon can apply to both plant and animal taxa.
Functional redundancy refers to the phenomenon that species in the same ecosystem fill similar roles, which results in a sort of "insurance" in the ecosystem. Redundant species can easily do the job of a similar species from the same functional niche. [13] This is possible because similar species have adapted to fill the same niche overtime.
Time redundancy, performing the same operation multiple times such as multiple executions of a program or multiple copies of data transmitted; Software redundancy such as N-version programming; A modified form of software redundancy, applied to hardware may be: Distinct functional redundancy, such as both mechanical and hydraulic braking in a car.
In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition.
In organic chemistry, enols are a type of functional group or intermediate in organic chemistry containing a group with the formula C=C(OH) (R = many substituents). The term enol is an abbreviation of alkenol, a portmanteau deriving from "-ene"/"alkene" and the "-ol".
In chemistry, functionality is the presence of functional groups in a molecule. A monofunctional molecule possesses one functional group, a bifunctional (or difunctional) two, a trifunctional three, and so forth. In organic chemistry (and other fields of chemistry), a molecule's functionality has a decisive influence on its reactivity.
In organic chemistry, the acetoxy group (abbr. AcO or OAc; IUPAC name: acetyloxy [1]), is a functional group with the formula −OCOCH 3 and the structure −O−C(=O)−CH 3. As the -oxy suffix implies, it differs from the acetyl group (−C(=O)−CH 3) by the presence of an additional oxygen atom. The name acetoxy is the short form of acetyl-oxy.