Search results
Results From The WOW.Com Content Network
An M/M/∞ queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers currently being served. Since, the number of servers in parallel is infinite, there is no queue and the number of customers in the systems coincides with the number of customers being served at any moment.
In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]
In 1953, David George Kendall solved the GI/M/k queue [15] and introduced the modern notation for queues, now known as Kendall's notation. In 1957, Pollaczek studied the GI/G/1 using an integral equation. [16] John Kingman gave a formula for the mean waiting time in a G/G/1 queue, now known as Kingman's formula. [17]
M X /M Y /1 queue: D: Degenerate distribution: A deterministic or fixed service time. M/D/1 queue: E k: Erlang distribution: An Erlang distribution with k as the shape parameter (i.e., sum of k i.i.d. exponential random variables). G: General distribution: Although G usually refers to independent service time, some authors prefer to use GI to ...
A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.
An M/M/1 queueing node. In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation.
In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem (sometimes the Burke's output theorem [1]) is a theorem (stated and demonstrated by Paul J. Burke while working at Bell Telephone Laboratories) asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ:
In queueing theory, a discipline within the mathematical theory of probability, traffic equations are equations that describe the mean arrival rate of traffic, allowing the arrival rates at individual nodes to be determined.