When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lebesgue differentiation theorem - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_differentiation...

    The derivative of this integral at x is defined to be | |, where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B centered at x, and B → x means that the diameter of B tends to 0. The Lebesgue differentiation theorem ( Lebesgue 1910 ) states that this derivative exists and is equal to f ( x ) at almost every point x ∈ R n . [ 1 ]

  3. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    The sign of the line integral is based on the right-hand rule for the choice of direction of line element ds. To establish this sign, for example, suppose the field F points in the positive z-direction, and the surface Σ is a portion of the xy-plane with perimeter ∂Σ. We adopt the normal to Σ to be in the positive z-direction.

  4. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The Lebesgue integral is obtained by slicing along the y-axis, using the 1-dimensional Lebesgue measure to measure the "width" of the slices. Folland (1999) summarizes the difference between the Riemann and Lebesgue approaches thus: "to compute the Riemann integral of f , one partitions the domain [ a , b ] into subintervals", while in the ...

  5. Differentiation of integrals - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of_integrals

    One result on the differentiation of integrals is the Lebesgue differentiation theorem, as proved by Henri Lebesgue in 1910. Consider n-dimensional Lebesgue measure λ n on n-dimensional Euclidean space R n.

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Lebesgue integration; ... the derivative is the slope of a line that is tangent to the curve at ... The derivatives in the table above are for when the range of the ...

  7. Lebesgue measure - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_measure

    Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure. Lebesgue measure is strictly positive on non-empty open sets, and so its support is the whole of R n. If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable.

  8. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  9. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Geometrically, the derivative is the slope of the tangent line to the graph of f at a. The tangent line is a limit of secant lines just as the derivative is a limit of difference quotients. For this reason, the derivative is sometimes called the slope of the function f. [49]: 61–63