Search results
Results From The WOW.Com Content Network
The derivative of this integral at x is defined to be | |, where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B centered at x, and B → x means that the diameter of B tends to 0. The Lebesgue differentiation theorem ( Lebesgue 1910 ) states that this derivative exists and is equal to f ( x ) at almost every point x ∈ R n . [ 1 ]
The sign of the line integral is based on the right-hand rule for the choice of direction of line element ds. To establish this sign, for example, suppose the field F points in the positive z-direction, and the surface Σ is a portion of the xy-plane with perimeter ∂Σ. We adopt the normal to Σ to be in the positive z-direction.
The Lebesgue integral is obtained by slicing along the y-axis, using the 1-dimensional Lebesgue measure to measure the "width" of the slices. Folland (1999) summarizes the difference between the Riemann and Lebesgue approaches thus: "to compute the Riemann integral of f , one partitions the domain [ a , b ] into subintervals", while in the ...
One result on the differentiation of integrals is the Lebesgue differentiation theorem, as proved by Henri Lebesgue in 1910. Consider n-dimensional Lebesgue measure λ n on n-dimensional Euclidean space R n.
Lebesgue integration; ... the derivative is the slope of a line that is tangent to the curve at ... The derivatives in the table above are for when the range of the ...
Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure. Lebesgue measure is strictly positive on non-empty open sets, and so its support is the whole of R n. If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable.
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
Geometrically, the derivative is the slope of the tangent line to the graph of f at a. The tangent line is a limit of secant lines just as the derivative is a limit of difference quotients. For this reason, the derivative is sometimes called the slope of the function f. [49]: 61–63