Search results
Results From The WOW.Com Content Network
In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics , where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.
Every kite is an orthodiagonal quadrilateral, meaning that its two diagonals are at right angles to each other. Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.
a parallelogram in which the diagonals are perpendicular (an orthodiagonal parallelogram) a quadrilateral with four sides of equal length (by definition) a quadrilateral in which the diagonals are perpendicular and bisect each other; a quadrilateral in which each diagonal bisects two opposite interior angles
A parallelogram with one right angle and two adjacent equal sides [1] A quadrilateral with four equal sides and four right angles; that is, a quadrilateral that is both a rhombus and a rectangle [1] A quadrilateral where the diagonals are equal, and are the perpendicular bisectors of each other (i.e., a rhombus with equal diagonals) [2]
In elementary geometry, a quadrilateral whose diagonals are perpendicular and of equal length has been called a midsquare quadrilateral (referring to the square formed by its four edge midpoints). [ 1 ] [ 2 ] These shapes are, by definition, simultaneously equidiagonal quadrilaterals and orthodiagonal quadrilaterals . [ 2 ]
Orthodiagonal quadrilateral: the diagonals cross at right angles. Equidiagonal quadrilateral: the diagonals are of equal length. Bisect-diagonal quadrilateral: one diagonal bisects the other into equal lengths. Every dart and kite is bisect-diagonal. When both diagonals bisect another, it's a parallelogram.
The orange and green quadrilaterals are congruent; the blue one is not congruent to them. Congruence between the orange and green ones is established in that side BC corresponds to (in this case of congruence, equals in length) JK, CD corresponds to KL, DA corresponds to LI, and AB corresponds to IJ, while angle ∠C corresponds to (equals) angle ∠K, ∠D corresponds to ∠L, ∠A ...
Two pairs of opposite sides are parallel (by definition). Two pairs of opposite sides are equal in length. Two pairs of opposite angles are equal in measure. The diagonals bisect each other. One pair of opposite sides is parallel and equal in length. Adjacent angles are supplementary. Each diagonal divides the quadrilateral into two congruent ...