When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poroelasticity - Wikipedia

    en.wikipedia.org/wiki/Poroelasticity

    Poroelasticity is a field in materials science and mechanics that studies the interaction between fluid flow, pressure and bulk solid deformation within a linear porous medium and it is an extension of elasticity and porous medium flow (diffusion equation). [1] The deformation of the medium influences the flow of the fluid and vice versa.

  3. Mass diffusivity - Wikipedia

    en.wikipedia.org/wiki/Mass_diffusivity

    The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm 2 /s, and in water its diffusion coefficient is 0.0016 mm 2 /s. [1] [2]

  4. Porous medium equation - Wikipedia

    en.wikipedia.org/wiki/Porous_medium_equation

    The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.

  5. Soil mechanics - Wikipedia

    en.wikipedia.org/wiki/Soil_mechanics

    Density, bulk density, or wet density, , are different names for the density of the mixture, i.e., the total mass of air, water, solids divided by the total volume of air water and solids (the mass of air is assumed to be zero for practical purposes):

  6. Schmidt number - Wikipedia

    en.wikipedia.org/wiki/Schmidt_number

    The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).

  7. Soil consolidation - Wikipedia

    en.wikipedia.org/wiki/Soil_consolidation

    The first modern theoretical models for soil consolidation were proposed in the 1920s by Terzaghi and Fillunger, according to two substantially different approaches. [1] The former was based on diffusion equations in eulerian notation, whereas the latter considered the local Newton’s law for both liquid and solid phases, in which main variables, such as partial pressure, porosity, local ...

  8. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.

  9. Pore space in soil - Wikipedia

    en.wikipedia.org/wiki/Pore_space_in_soil

    The density of quartz is around 2.65 g/cm 3 but the dry bulk density of a soil can be less than half that value. Most soils have a dry bulk density between 1.0 and 1.6 g/cm 3 but organic soil and some porous clays may have a dry bulk density well below 1 g/cm 3.

  1. Related searches how to determine diffusion coefficient of air in soil based on density and pressure

    soil density formulasoil density chart