When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.

  3. Normal mode - Wikipedia

    en.wikipedia.org/wiki/Normal_mode

    The general solution is a superposition of the normal modes where c 1, c 2, φ 1, and φ 2 are determined by the initial conditions of the problem. The process demonstrated here can be generalized and formulated using the formalism of Lagrangian mechanics or Hamiltonian mechanics .

  4. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The general form of its probability density function is [2] [3] = (). The parameter μ {\textstyle \mu } is the mean or expectation of the distribution (and also its median and mode ), while the parameter σ 2 {\textstyle \sigma ^{2}} is the variance .

  5. Central tendency - Wikipedia

    en.wikipedia.org/wiki/Central_tendency

    The mean (L 2 center) and midrange (L ∞ center) are unique (when they exist), while the median (L 1 center) and mode (L 0 center) are not in general unique. This can be understood in terms of convexity of the associated functions ( coercive functions ).

  6. Moment (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(mathematics)

    In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.

  7. Moment-generating function - Wikipedia

    en.wikipedia.org/wiki/Moment-generating_function

    In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution.Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.

  8. Median - Wikipedia

    en.wikipedia.org/wiki/Median

    The median of a symmetric unimodal distribution coincides with the mode. The median of a symmetric distribution which possesses a mean μ also takes the value μ. The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode.

  9. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    However, this use is not standard among probabilists and statisticians. In other sources, "probability distribution function" may be used when the probability distribution is defined as a function over general sets of values or it may refer to the cumulative distribution function, or it may be a probability mass function (PMF) rather than the ...