When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    The first algorithm for random decision forests was created in 1995 by Tin Kam Ho [1] using the random subspace method, [2] which, in Ho's formulation, is a way to implement the "stochastic discrimination" approach to classification proposed by Eugene Kleinberg.

  3. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    In statistics, jackknife variance estimates for random forest are a way to estimate the variance in random forest models, in order to eliminate the bootstrap effects.

  4. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers, [6] support vector machines, [7] nearest neighbours [8] [9] and other types of classifiers.

  5. Random tree - Wikipedia

    en.wikipedia.org/wiki/Random_tree

    In mathematics and computer science, a random tree is a tree or arborescence that is formed by a stochastic process. Types of random trees include: Types of random trees include: Uniform spanning tree , a spanning tree of a given graph in which each different tree is equally likely to be selected

  6. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    Loops, which can confound naive maze solvers, may be introduced by adding random edges to the result during the course of the algorithm. The animation shows the maze generation steps for a graph that is not on a rectangular grid. First, the computer creates a random planar graph G shown in blue, and its dual F shown in yellow. Second, the ...

  7. Rapidly exploring random tree - Wikipedia

    en.wikipedia.org/wiki/Rapidly_exploring_random_tree

    A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search nonconvex, high-dimensional spaces by randomly building a space-filling tree.The tree is constructed incrementally from samples drawn randomly from the search space and is inherently biased to grow towards large unsearched areas of the problem.

  8. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning processes can be divided into two types (pre- and post-pruning). Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain).

  9. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence [clarify] on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method. [1]