When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. ilastik - Wikipedia

    en.wikipedia.org/wiki/Ilastik

    Using these user annotations and the generic image features, the user can train a random forest classifier. Trained ilastik classifiers can be applied new data not included in the training set in ilastik via its batch processing functionality, [2] or without using the graphical user interface, in headless mode. [3]

  4. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...

  6. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Because three of the four predict the positive class, the ensemble's overall classification is positive. Random forests like the one shown are a common application of bagging. An example of the aggregation process for an ensemble of decision trees. Individual classifications are aggregated, and an overall classification is derived.

  7. Random tree - Wikipedia

    en.wikipedia.org/wiki/Random_tree

    Random forest, a machine-learning classifier based on choosing random subsets of variables for each tree and using the most frequent tree output as the overall classification; Branching process, a model of a population in which each individual has a random number of children

  8. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers, [6] support vector machines, [7] nearest neighbours [8] [9] and other types of classifiers.

  9. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    The random forest classifier operates with a high accuracy and speed. [11] Random forests are much faster than decision trees because of using a smaller dataset. To recreate specific results, it is necessary to keep track of the exact random seed used to generate the bootstrap sets.