Search results
Results From The WOW.Com Content Network
For example, CSC is (val, row_ind, col_ptr), where val is an array of the (top-to-bottom, then left-to-right) non-zero values of the matrix; row_ind is the row indices corresponding to the values; and, col_ptr is the list of val indexes where each column starts. The name is based on the fact that column index information is compressed relative ...
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms , creation of user interfaces , and interfacing with programs written in other languages.
LU matrix factorization. MATLAB reference. Computer code. LAPACK is a collection of FORTRAN subroutines for solving dense linear algebra problems; ALGLIB includes a partial port of the LAPACK to C++, C#, Delphi, etc. C++ code, Prof. J. Loomis, University of Dayton; C code, Mathematics Source Library; Rust code; LU in X10; Online resources
For example, in the MATLAB or GNU Octave function pinv, the tolerance is taken to be t = ε⋅max(m, n)⋅max(Σ), where ε is the machine epsilon. The computational cost of this method is dominated by the cost of computing the SVD, which is several times higher than matrix–matrix multiplication, even if a state-of-the art implementation ...
The column space of a matrix A is the set of all linear combinations of the columns in A. If A = [a 1 ⋯ a n], then colsp(A) = span({a 1, ..., a n}). Given a matrix A, the action of the matrix A on a vector x returns a linear combination of the columns of A with the coordinates of x as coefficients; that is, the columns of the matrix generate ...
Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...