Search results
Results From The WOW.Com Content Network
The MD5 message-digest algorithm is a widely used hash function producing a 128-bit hash value. MD5 was designed by Ronald Rivest in 1991 to replace an earlier hash function MD4, [3] and was specified in 1992 as RFC 1321. MD5 can be used as a checksum to verify data integrity against unintentional corruption.
John Smith and Sandra Dee share the same hash value of 02, causing a hash collision. In computer science, a hash collision or hash clash [1] is when two distinct pieces of data in a hash table share the same hash value. The hash value in this case is derived from a hash function which takes a data input and returns a fixed length of bits. [2]
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
Hash-based signature schemes use one-time signature schemes as their building block. A given one-time signing key can only be used to sign a single message securely. Indeed, signatures reveal part of the signing key. The security of (hash-based) one-time signature schemes relies exclusively on the security of an underlying hash function.
A mid-squares hash code is produced by squaring the input and extracting an appropriate number of middle digits or bits. For example, if the input is 123 456 789 and the hash table size 10 000, then squaring the key produces 15 241 578 750 190 521, so the hash code is taken as the middle 4 digits of the 17-digit number (ignoring the high digit ...
This attack is normally harder, a hash of n bits can be broken in 2 (n/2)+1 time steps, but is much more powerful than a classical collision attack. Mathematically stated, given two different prefixes p 1, p 2, the attack finds two suffixes s 1 and s 2 such that hash(p 1 ∥ s 1) = hash(p 2 ∥ s 2) (where ∥ is the concatenation operation).
In cryptography, collision resistance is a property of cryptographic hash functions: a hash function H is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs a and b where a ≠ b but H(a) = H(b).