When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    A prime number is a natural number that has no natural number divisors other than the number 1 and itself.. To find all the prime numbers less than or equal to a given integer N, a sieve algorithm examines a set of candidates in the range 2, 3, …, N, and eliminates those that are not prime, leaving the primes at the end.

  5. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  6. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    AKS is the first primality-proving algorithm to be simultaneously general, polynomial-time, deterministic, and unconditionally correct. Previous algorithms had been developed for centuries and achieved three of these properties at most, but not all four. The AKS algorithm can be used to verify the primality of any general number given. Many ...

  7. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    from math import isqrt def sieve_of_Sundaram (n): """The sieve of Sundaram is a simple deterministic algorithm for finding all the prime numbers up to a specified integer.""" if n < 3: if n < 2: return 0 else: return 1 k = (n-3) // 2 + 1 integers_list = [True for i in range (k)] ops = 0 for i in range ((isqrt (n)-3) // 2 + 1): # if integers ...

  8. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...

  9. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor . [ 1 ] [ 2 ] It is one of the few known quantum algorithms with compelling potential applications and strong evidence of superpolynomial speedup compared to best known classical (non-quantum ...