Search results
Results From The WOW.Com Content Network
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system .
In mathematics, when the elements of some set have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements a {\displaystyle a} and b {\displaystyle b} belong to the same equivalence class if, and only if , they are ...
Any equivalence relation is the negation of an apartness relation, though the converse statement only holds in classical mathematics (as opposed to constructive mathematics), since it is equivalent to the law of excluded middle. Each relation that is both reflexive and left (or right) Euclidean is also an equivalence relation.
It is known, for instance, that every continuous translation invariant continuous linear operator on L 1 is the convolution with a finite Borel measure. More generally, every continuous translation invariant continuous linear operator on L p for 1 ≤ p < ∞ is the convolution with a tempered distribution whose Fourier transform is bounded.
In mathematics a translation surface is a surface obtained from identifying the sides of a polygon in the Euclidean plane by translations. An equivalent definition is a Riemann surface together with a holomorphic 1-form. These surfaces arise in dynamical systems where they can be used to model billiards, and in Teichmüller theory.
Similar figures. In Euclidean geometry, two objects are similar if they have the same shape, or if one has the same shape as the mirror image of the other.More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection.
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics.
Elementary equivalence; Equals sign; Equality (mathematics) Equality operator; Equipollence (geometry) Equivalence (measure theory) Equivalence class; Equivalence of categories; Equivalence of metrics; Equivalence relation; Equivalence test; Equivalent definitions of mathematical structures; Equivalent infinitesimal; Equivalent latitude ...